/* ---- Google Analytics Code Below */

Saturday, October 12, 2019

Race to Quantum

Useful sort view from Europe on quantum efforts underway.   There are very big stakes.   Solving the most complex, wicked problems in new ways.

By  Katia Moskvitch in Wired UK

Inside the High Stakes Race to Make Quantum Computers Work

Traditional computers—be it an Apple Watch or the most powerful supercomputer—rely on tiny silicon transistors that work like on-off switches to encode bits of data. Each circuit can have one of two values—either one (on) or zero (off) in binary code; the computer turns the voltage in a circuit on or off to make it work.

A quantum computer is not limited to this “either/or” way of thinking. Its memory is made up of quantum bits, or qubits—tiny particles of matter like atoms or electrons. And qubits can do “both/and,” meaning that they can be in a superposition of all possible combinations of zeros and ones; they can be all of those states simultaneously.

FOR CERN, THE quantum promise could, for instance, help its scientists find evidence of supersymmetry, or SUSY, which so far has proven elusive. At the moment, researchers spend weeks and months sifting through the debris from proton-proton collisions in the LCH, trying to find exotic, heavy sister-particles to all our known particles of matter. The quest has now lasted decades, and a number of physicists are questioning if the theory behind SUSY is really valid. A quantum computer would greatly speed up analysis of the collisions, hopefully finding evidence of supersymmetry much sooner—or at least allowing us to ditch the theory and move on.

A quantum device might also help scientists understand the evolution of the early universe, the first few minutes after the Big Bang. Physicists are pretty confident that back then, our universe was nothing but a strange soup of subatomic particles called quarks and gluons. To understand how this quark-gluon plasma has evolved into the universe we have today, researchers simulate the conditions of the infant universe and then test their models at the LHC, with multiple collisions. Performing a simulation on a quantum computer, governed by the same laws that govern the very particles that the LHC is smashing together, could lead to a much more accurate model to test.

Beyond pure science, banks, pharmaceutical companies, and governments are also waiting to get their hands on computing power that could be tens or even hundreds of times greater than that of any traditional computer.

And they’ve been waiting for decades. Google is in the race, as are IBM, Microsoft, Intel and a clutch of startups, academic groups, and the Chinese government. The stakes are incredibly high. .... "

No comments: