Based on a conversation I have had, this is a considerable breakthrough with broad application.
Enzymes successfully embedded in plastics
Research News / June 01, 2021 Fraunhofer Institute
In general, plastics are processed at way over a hundred degrees Celsius. Enzymes, by contrast, cannot usually withstand these high temperatures. Researchers at the Fraunhofer Institute for Applied Polymer Research IAP have managed to reconcile these contradictions: They are able to embed enzymes in plastics without the enzymes losing their activity in the process. The potentials this creates are enormous.
Materials that clean themselves, have anti-mold surfaces or are even self-degrading are just a few examples of what will be possible if we manage to embed active enzymes into plastics. But for the enzyme-specific properties to be transferred to the materials, the enzymes must not suffer damage as they are embedded in the plastic. Scientists at Fraunhofer IAP have developed a solution to the problem as part of the “Biofunctionalization/Biologization of Polymer Materials BioPol” project. Since summer 2018, the project has been running in cooperation with BTU Cottbus-Senftenberg. The Ministry of Science, Research and Culture of the State of Brandenburg is funding the project.
“It was clear from the outset that we were not looking to produce biofunctionalized plastics on a laboratory scale. We wanted to take a giant step to show that technical production is possible,” says Dr. Ruben R. Rosencrantz, Head of the “Biofunctionalized Materials and (Glyco)Biotechnology” department at Fraunhofer IAP, summarizing the ambitious project goals. At around the midpoint in the project, major breakthroughs are already emerging: Enzymes have been successfully embedded, both in terms of the enzymes themselves and the processing technique. ..."
No comments:
Post a Comment