Simulators allow us to guide the future of direction of research for more universal solutions.
Two New Simulators Tease Future of Quantum Computing By Jeremy Hsu
A universal quantum computer capable of outperforming today’s classical computers in solving many different problems remains the biggest future prize for many engineers and researchers. One possible path toward that goal comes from two U.S. research groups that have demonstrated some of the largest quantum simulators ever built. Such specialized devices are much less versatile than the vision for universal quantum computers, but share architectural similarities that could pave the way for the latter.
Quantum simulators are designed to tackle very specific problems in scientific fields such as high-energy physics and chemistry. These devices have mostly consisted of small arrays of five or 10 quantum bits (qubits) that can each represent multiple states of information simultaneously. In recent work, one research group used lasers as optical tweezers to assemble a 51-qubit array of so-called Rydberg atoms. A second group showed how to build a 53-qubit “trapped ion” device using electric fields to control a string of charged atoms. .... "
Wednesday, December 27, 2017
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment