Next step forward to usable smart glasses, driven by tiny lasers. General or very narrow applications?
Tiny Lasers Could Finally Bring Us Really Smart AR Glasses Post–Google Glass, a new alliance says it has the winning tech KATHY PRETZ in Spectrum IEEE
When Google Glass debuted almost a decade ago, augmented reality (AR) wearables seemed poised to take off. Smart glasses let users surf the Internet; access maps, calendars, and other apps; and even call up recipes. Users could simultaneously interact with the physical and digital worlds.
But Google withdrew its smart glasses from the market in early 2015. Several reasons have been given for their demise, including poor marketing, an unattractive design, too many software glitches, and a short battery life.
"The technology Google Glass needed [to succeed]—such as illumination sources, compact projectors and optics, and a whole host of other things—was not mature enough at that time to meet all the requirements of design, performance, and use," says Bharath Rajagopalan, director of strategic marketing for STMicroelectronics, a multinational semiconductor manufacturer and a leader in microelectromechanical system (MEMS) technologies. "Sometimes when you're too early to the market, you don't have all the necessary elements."
Since the demise of Google Glass, companies have attempted to improve the design, performance, and functionality of smart glasses. The newer products include Blade glasses by Vuzix and Focals by North, which Google acquired last year.
Meanwhile, glasses with audio features only, including Bose Frames and Amazon Echo Frames, have sprung up. Facebook recently announced a collaboration with Luxottica on its version of audio-only smart glasses.
Some of the major players in the field say that for smart glasses to become more popular, they must be lightweight, low-power devices that are fashionable. A key enabling technology, they say, is laser-beam scanning (LBS) solutions, which ST has been a pioneer in developing.
LBS is gaining adoption for use in smart glasses because it uses a compact projector, produces a bright image with rich colors, consumes relatively little power, and can be integrated aesthetically into a pair of glasses, Rajagopalan says. Tiny MEMS mirrors create images by deflecting the laser beams emitted from compact diodes. They project the images onto waveguides or other combiner optics, he says. The combiner optics are typically embedded in smart-glasses lenses, onto which the images are projected, Rajagopalan says. Focals by North glasses use LBS technology.
Rajagopalan says the micromirrors and other tiny components—including lasers, projectors, and batteries—can all be housed unobtrusively in a module small enough to fit inside the frames. .... '
No comments:
Post a Comment