Excellent piece, broadly useful beyond AI applications.
May 12, 2021, Volume 19, issue 2
Download PDF version of this article PDF
A survey for practitioners
Ramya Srinivasan and Ajay Chander in CACM
A child wearing sunglasses is labeled as a "failure, loser, nonstarter, unsuccessful person." This is just one of the many systemic biases exposed by ImageNet Roulette, an art project that applies labels to user-submitted photos by sourcing its identification system from the original ImageNet database.7 ImageNet, which has been one of the instrumental datasets for advancing AI, has deleted more than half a million images from its "person" category since this instance was reported in late 2019.23 Earlier in 2019, researchers showed how Facebook's ad-serving algorithm for deciding who is shown a given ad exhibits discrimination based on race, gender, and religion of users.1 There have been reports of commercial facial-recognition software (notably Amazon's Rekognition, among others) being biased against darker-skinned women.6,22
These examples provide a glimpse into a rapidly growing body of work that is exposing the bias associated with AI systems, but biased algorithmic systems are not a new phenomenon. As just one example, in 1988 the UK Commission for Racial Equality found a British medical school guilty of discrimination because the algorithm used to shortlist interview candidates was biased against women and applicants with non-European names.17
With the rapid adoption of AI across a variety of sectors, including in areas such as justice and health care, technologists and policy makers have raised concerns about the lack of accountability and bias associated with AI-based decisions. From AI researchers and software engineers to product leaders and consumers, a variety of stakeholders are involved in the AI pipeline. The necessary expertise around AI, datasets, and the policy and rights landscape that collectively helps uncover bias is not uniformly available among these stakeholders. As a consequence, bias in AI systems can compound inconspicuously.
Consider, for example, the critical role of ML (machine learning) developers in this pipeline. They are asked to: preprocess the data appropriately, choose the right models from several available ones, tune parameters, and adapt model architectures to suit the requirements of an application. Suppose an ML developer was entrusted with developing an AI model to predict which loans will default. Unaware of bias in the training data, an engineer may inadvertently train models using only the validation accuracy. Suppose the training data contained too many young people who defaulted. In this case, the model is likely to make a similar prediction about young people defaulting when applied to test data. There is thus a need to educate ML developers about the various kinds of biases that can creep into the AI pipeline.
Defining, detecting, measuring, and mitigating bias in AI systems is not an easy task and is an active area of research.4 A number of efforts are being undertaken across governments, nonprofits, and industries, including enforcing regulations to address issues related to bias. As work proceeds toward recognizing and addressing bias in a variety of societal institutions and pathways, there is a growing and persistent effort to ensure that computational systems are designed to address these concerns.
The broad goal of this article is to educate nondomain experts and practitioners such as ML developers about various types of biases that can occur across the different stages of the AI pipeline and suggest checklists for mitigating bias. There is a vast body of literature related to the design of fair algorithms.4 As this article is directed at aiding ML developers, the focus is not on the design of fair AI algorithms but rather on practical aspects that can be followed to limit and test for bias during problem formulation, data creation, data analysis, and evaluation. Specifically, the contributions can be summarized as follows:
• Taxonomy of biases in the AI pipeline. A structural organization of the various types of bias that can creep into the AI pipeline is provided, anchored in the various phases from data creation and problem formulation to data preparation and analysis.
• Guidelines for bridging the gap between research and practice. Analyses that elucidate the challenges associated with implementing research ideas in the real world are listed, as well as suggested practices to fill this gap. Guidelines that can aid ML developers in testing for various kinds of biases are provided.
The goal of this work is to enhance awareness and practical skills around bias, toward the judicious use and adoption of AI systems......'
No comments:
Post a Comment