Automating big-data analysis
With new algorithms, data scientists could accomplish in days what has traditionally taken months.
Larry Hardesty | MIT News Office
Last year, MIT researchers presented a system that automated a crucial step in big-data analysis: the selection of a “feature set,” or aspects of the data that are useful for making predictions. The researchers entered the system in several data science contests, where it outperformed most of the human competitors and took only hours instead of months to perform its analyses.
This week, in a pair of papers at the IEEE International Conference on Data Science and Advanced Analytics, the team described an approach to automating most of the rest of the process of big-data analysis — the preparation of the data for analysis and even the specification of problems that the analysis might be able to solve.
The researchers believe that, again, their systems could perform in days tasks that used to take data scientists months.
“The goal of all this is to present the interesting stuff to the data scientists so that they can more quickly address all these new data sets that are coming in,” says Max Kanter MEng ’15, who is first author on last year’s paper and one of this year’s papers. “[Data scientists want to know], ‘Why don’t you show me the top 10 things that I can do the best, and then I’ll dig down into those?’ So [these methods are] shrinking the time between getting a data set and actually producing value out of it.” ... '
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment