Intriguing thought, technical.
Game theory as an engine for large-scale data analysis By Brian McWilliams, Ian Gemp, Claire Vernade
EigenGame maps out a new approach to solve fundamental ML problems.
Modern AI systems approach tasks like recognising objects in images and predicting the 3D structure of proteins as a diligent student would prepare for an exam. By training on many example problems, they minimise their mistakes over time until they achieve success. But this is a solitary endeavour and only one of the known forms of learning. Learning also takes place by interacting and playing with others. It’s rare that a single individual can solve extremely complex problems alone. By allowing problem solving to take on these game-like qualities, previous DeepMind efforts have trained AI agents to play Capture the Flag and achieve Grandmaster level at Starcraft. This made us wonder if such a perspective modeled on game theory could help solve other fundamental machine learning problems.
Today at ICLR 2021 (the International Conference on Learning Representations), we presented “EigenGame: PCA as a Nash Equilibrium,” which received an Outstanding Paper Award. Our research explored a new approach to an old problem: we reformulated principal component analysis (PCA), a type of eigenvalue problem, as a competitive multi-agent game we call EigenGame. PCA is typically formulated as an optimisation problem (or single-agent problem); however, we found that the multi-agent perspective allowed us to develop new insights and algorithms which make use of the latest computational resources. This enabled us to scale to massive data sets that previously would have been too computationally demanding, and offers an alternative approach for future exploration. ... "
No comments:
Post a Comment