/* ---- Google Analytics Code Below */

Saturday, February 13, 2021

Weaknesses in ML

I like explanations of how a solution works in real world contexts.   Lots of work to still do.

Uncovering Unknown Unknowns in Machine Learning  Google Blog., Thursday, February 11, 2021

Posted by Lora Aroyo and Praveen Paritosh, Research Scientists, Google Research

The performance of machine learning (ML) models depends both on the learning algorithms, as well as the data used for training and evaluation. The role of the algorithms is well studied and the focus of a multitude of challenges, such as SQuAD, GLUE, ImageNet, and many others. In addition, there have been efforts to also improve the data, including a series of workshops addressing issues for ML evaluation. In contrast, research and challenges that focus on the data used for evaluation of ML models are not commonplace. Furthermore, many evaluation datasets contain items that are easy to evaluate, e.g., photos with a subject that is easy to identify, and thus they miss the natural ambiguity of real world context. The absence of ambiguous real-world examples in evaluation undermines the ability to reliably test machine learning performance, which makes ML models prone to develop “weak spots”, i.e., classes of examples that are difficult or impossible for a model to accurately evaluate, because that class of examples is missing from the evaluation set.

To address the problem of identifying these weaknesses in ML models, we recently launched the Crowdsourcing Adverse Test Sets for Machine Learning (CATS4ML) Data Challenge at HCOMP 2020 (open until 30 April, 2021 to researchers and developers worldwide). The goal of the challenge is to raise the bar in ML evaluation sets and to find as many examples as possible that are confusing or otherwise problematic for algorithms to process. CATS4ML relies on people’s abilities and intuition to spot new data examples about which machine learning is confident, but actually misclassifies.  ... 

No comments: