/* ---- Google Analytics Code Below */

Thursday, January 13, 2022

Digital Twins, Simulation, Design

 Like drawing the relationship to general simulation, which has been around for a long time.

Digital twins improve real-life manufacturing

Using simulations can ease the complex development process and provide insights into how products are performing in the real world. 

By MIT Technology Review Insightsarchive page

January 5, 2022, In association withSiemens Digital Industries Software

Before reality, there’s simulation. 

A 2021 missile-inceptor test conducted by aerospace and US defense technology provider Raytheon Technologies held no surprises because the company had already tested almost every aspect of the launch in simulation. Siemens and space agency NASA’s Jet Propulsion Laboratory worked together on a digital twin of the Mars Science Laboratory on the Curiosity rover to solve heat dissipation problems caused by the radioisotope power generator. And tire and rubber manufacturer Bridgestone uses digital twins to simulate the performance of its tires using data from actual vehicles to develop a price-per-kilometer service in Europe. 

Digital twins improve real-life manufacturing

Download the full report

Real-world data paired with digital simulations of products—digital twins—are providing valuable insights that are helping companies identify and resolve problems before prototypes go into production and manage products in the field, says Alberto Ferrari, senior director of the Model-Based Digital Thread Process Capability Center at Raytheon. 

“As they say, ‘All the models are wrong, but some of them are useful,’” Ferrari says. “Digital twins, supported with data—as real facts—are a way to identify models that are really useful for decision-making.” 

The concept has started to take off, with the market for digital-twin technology and tools growing by 58% annually to reach $48 billion by 2026, up from $3.1 billion in 2020. Using the technology to create digital prototypes saves resources, money, and time. Yet the technology is also being used to simulate far more, from urban populations to energy systems to the deployment of new services. 

Take manufacturers as varied as Raytheon and Swedish distillery Absolut Vodka, which are using the technology to design new products and streamline their manufacturing processes, from the supply chain through production and, eventually, to recycling and disposal. Singapore, London, and several Texas Gulf Coast cities have created digital twins of their communities to tackle facets of city management, including modeling traffic patterns on city streets, analyzing building trends, and predicting the impact of climate change. And companies such as Bridgestone and drone-service provider Zipline are using the technology paired with operational data to help launch new services. 

Companies have adopted digital twins as part of their digital transformations, a way to simulate performance, identify weaknesses, and operate services more efficiently. Any company’s digital initiative should explore whether some facet of its product, operations, or environment can be simulated to gain insight. 

Simulating design and manufacturing 

The digital-twin technologies of today have their foundations in the computer-aided design (CAD) and computer engineering tools developed more than three decades ago. Those software systems allowed engineers to create virtual simulations to test changes in product designs. Engineers designed a product component, such as an airfoil, on a computer and then tasked a modeler or sculptor to craft the item in clay, wood, or stock components for physical testing.   ..... ' 

No comments: