Very interesting, The very first para below does a good job of 'why' this could change RL methods, the rest of the article then carries on more technically. Supporting images are at the link . Is this a big deal? Humans determine they have reached a solution by comparing it to something they perceive is 'correct'. Like an image of correctness. Considering how this would be most useful. Could we teach a system to learn to learn patterns of correctness?
Recursive Classification: Replacing Rewards with Examples in RL
Wednesday, March 24, 2021 Posted by Benjamin Eysenbach, Student Researcher, Google Research
A general goal of robotics research is to design systems that can assist in a variety of tasks that can potentially improve daily life. Most reinforcement learning algorithms for teaching agents to perform new tasks require a reward function, which provides positive feedback to the agent for taking actions that lead to good outcomes. However, actually specifying these reward functions can be quite tedious and can be very difficult to define for situations without a clear objective, such as whether a room is clean or if a door is sufficiently shut. Even for tasks that are easy to describe, actually measuring whether the task has been solved can be difficult and may require adding many sensors to a robot's environment.
Alternatively, training a model using examples, called example-based control, has the potential to overcome the limitations of approaches that rely on traditional reward functions. This new problem statement is most similar to prior methods based on "success detectors", and efficient algorithms for example-based control could enable non-expert users to teach robots to perform new tasks, without the need for coding expertise, knowledge of reward function design, or the installation of environmental sensors.
In "Replacing Rewards with Examples: Example-Based Policy Search via Recursive Classification," we propose a machine learning algorithm for teaching agents how to solve new tasks by providing examples of success (e.g., if “success” examples show a nail embedded into a wall, the agent will learn to pick up a hammer and knock nails into the wall). This algorithm, recursive classification of examples (RCE), does not rely on hand-crafted reward functions, distance functions, or features, but rather learns to solve tasks directly from data, requiring the agent to learn how to solve the entire task by itself, without requiring examples of any intermediate states. Using a version of temporal difference learning — similar to Q-learning, but replacing the typical reward function term using only examples of success — RCE outperforms prior approaches based on imitation learning on simulated robotics tasks. Coupled with theoretical guarantees similar to those for reward-based learning, the proposed method offers a user-friendly alternative for teaching robots new tasks. ... "
No comments:
Post a Comment