/* ---- Google Analytics Code Below */

Friday, May 06, 2022

Introducing Quantum Sensing

 Also new to me,  quite the revelation that quantum effects can greatly improve how we sense.  Sensing makes for more and more accurate data, here a short intro.  

A Quantum of Sensing—Atomic Scale Bolsters New Sensor Boom Once-esoteric physics will underlie sensor revolutions in medicine, tech, and engineering By Charles Q. Choi  in IEEE Spectrum

Imagine sensors that can detect the magnetic fields of thoughts, help lunar rovers detect oxygen in moon rocks, or listen to radio waves from dark matter. Just as quantum computers can theoretically find the answers to problems no classical computer could ever solve, so too can an emerging generation of quantum sensors lead to new levels of sensitivity, new kinds of applications, and new opportunities to advance a range of fields, technologies, and scientific pursuits.

Quantum technology relies on quantum effects that can arise because the universe can become a fuzzy place at its very smallest levels. For example, the quantum effect known as superposition allows atoms and other building blocks of the cosmos to essentially exist in two or more places at the same time, while another quantum effect known as entanglement can link particles so they can influence each other instantly regardless of how far apart they are.

These quantum effects are infamously fragile to outside interference. However, whereas quantum computers strive to overcome this weakness, quantum sensors capitalize on this vulnerability to achieve extraordinary sensitivity to the slightest disturbances in the environment. Below are just a small sampling of the many kinds and varieties of quantum sensors being developed and deployed today.

BRAIN SCANS: Electric currents within the brain generate magnetic fields that sensors can analyze to noninvasively scan brain activity. Now quantum sensors are enabling a wearable helmet to perform such magnetoencephalography (MEG) scans with unprecedented performance and cost.

Currently MEG scans are performed with sensors known as superconducting quantum interference devices (SQUIDs). These require cooling with expensive liquid helium to -269 °C, making the scanners extremely large. In contrast, the new devices from startup Cerca Magnetics in Nottingham, England, are each about the size of a Lego brick. ... ' 

No comments: