/* ---- Google Analytics Code Below */

Friday, November 29, 2019

Benchmarking a Big Quantum Computer

This article ultimately gets very technical, but attracted me because the bit size starts to get interesting for real problems.   The abstract and intro part are enough to give you a feeling for advances and their implications.  I post it here for a look I will do at the use of such systems for supply chain optimization.

Benchmarking an 11-qubit quantum computer

K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak, J.-S. Chen, N. C. Pisenti, M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi, J. D. Wong-Campos, S. Allen, J. Apisdorf, P. Solomon, M. Williams, A. M. Ducore, A. Blinov, S. M. Kreikemeier, V. Chaplin, M. Keesan, C. Monroe & J. Kim 

Nature Communications volume 10, Article number: 5464 (2019)  in Nature.com
  
Abstract
The field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 171Yb+ ions. We demonstrate average single-qubit gate fidelities of 99.5%, average two-qubit-gate fidelities of 97.5%, and SPAM errors of 0.7%. To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani and Hidden Shift algorithms into our native gates and execute them on the hardware with average success rates of 78% and 35%, respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware.  .... "   .... ' 

No comments: