Seeing and imaging continue to be the place where AI/Machine learning make the most progress. Here another tagging example. Currently working on a horticultural example with plants.
This AI birdwatcher lets you 'see' through the eyes of a machine
by Robin A. Smith, Duke University
It can take years of birdwatching experience to tell one species from the next. But using an artificial intelligence technique called deep learning, Duke University researchers have trained a computer to identify up to 200 species of birds from just a photo.
The real innovation, however, is that the A.I. tool also shows its thinking, in a way that even someone who doesn't know a penguin from a puffin can understand.
The team trained their deep neural network—algorithms based on the way the brain works—by feeding it 11,788 photos of 200 bird species to learn from, ranging from swimming ducks to hovering hummingbirds.
The researchers never told the network "this is a beak" or "these are wing feathers." Given a photo of a mystery bird, the network is able to pick out important patterns in the image and hazard a guess by comparing those patterns to typical species traits it has seen before.
Along the way it spits out a series of heat maps that essentially say: "This isn't just any warbler. It's a hooded warbler, and here are the features—like its masked head and yellow belly—that give it away."
Duke computer science Ph.D. student Chaofan Chen and undergraduate Oscar Li led the research, along with other team members of the Prediction Analysis Lab directed by Duke professor Cynthia Rudin.
They found their neural network is able to identify the correct species up to 84% of the time—on par with some of its best-performing counterparts, which don't reveal how they are able to tell, say, one sparrow from the next.
Rudin says their project is about more than naming birds. It's about visualizing what deep neural networks are really seeing when they look at an image. .... "
Friday, November 22, 2019
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment