We were exposed to this and related issues when we first worked with neural methods. This is a big deal for all kinds of learning interactions.
Neural Networks Are Learning What to Remember and What to Forget MIT Technology Review
MIT Technology Review
Deep learning is changing the way we use and think about machines. Current incarnations are better than humans at all kinds of tasks, from chess and Go to face recognition and object recognition.
But many aspects of machine learning lag vastly behind human performance. In particular, humans have the extraordinary ability to constantly update their memories with the most important knowledge while overwriting information that is no longer useful.
That’s an important skill. The world provides a never-ending source of data, much of which is irrelevant to the tricky business of survival, and most of which is impossible to store in a limited memory. So humans and other creatures have evolved ways to retain important skills while forgetting irrelevant ones.
The same cannot be said of machines. Any skill they learn is quickly overwritten, regardless of how important it is. There is currently no reliable mechanism they can use to prioritize these skills, deciding what to remember and what to forget.
Today that looks set to change thanks to the work of Rahaf Aljundi and pals at the University of Leuven in Belgium and at Facebook AI Research. These guys have shown that the approach biological systems use to learn, and to forget, can work with artificial neural networks too. ... "
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment