Mote use of finite element analysis, which we also utilized for modeling of key manufacturing systems.
Powering Offshore Wind Farms With Numerical Modeling of Subsea Cables
Hellenic Cables in Greece uses finite element modeling to analyze and validate underground and subsea cable designs By Brianne Christopher
“Laws, Whitehouse received five minutes signal. Coil signals too weak to relay. Try drive slow and regular. I have put intermediate pulley. Reply by coils.”
Sound familiar? The message above was sent through the first transatlantic telegraph cable between Newfoundland and Ireland, way back in 1858. (“Whitehouse” refers to the chief electrician of the Atlantic Telegraph Company at the time, Wildman Whitehouse.) Fast forward to 2014: The bottom of the ocean is home to nearly 300 communications cables, connecting countries and providing internet communications around the world. Fast forward again: As of 2021, there are an estimated 1.3 million km of submarine cables (Figure 1) in service, ranging from a short 131 km cable between Ireland and the U.K. to the 20,000 km cable that connects Asia with North America and South America. We know what the world of submarine cables looks like today, but what about the future?
Photo of a ship carrying huge coils of submarine cable for deployment in the ocean.Figure 1. Submarine cables keep the world connected.
Moving Wind Power Offshore
The offshore wind (OFW) industry is one of the most rapidly advancing sources of power around the world. It makes sense: Wind is stronger and more consistent over the open ocean than it is on land. Some wind farms are capable of powering 500,000 homes or more. Currently, Europe leads the market, making up almost 80 percent of OFW capacity. However, the worldwide demand for energy is expected to increase by 20 percent in 10 years, with a large majority of that demand supplied by sustainable energy sources like wind power.
Offshore wind farms (Figure 2) are made up of networks of turbines. These networks include cables that connect wind farms to the shore and supply electricity to our power grid infrastructure (Figure 3). Many OFW farms are made up of grounded structures, like monopiles and other types of bottom-fixed wind turbines. The foundations for these structures are expensive to construct and difficult to install in deep sea environments, as the cables have to be buried in the seafloor. Installation and maintenance is easier to accomplish in shallow waters. .... '
No comments:
Post a Comment