New directions on understanding the brain and how it operates
Eavesdropping on the Brain with 10,000 Electrodes
Exponential growth comes to neural implants
BARUN DUTTA 28 MAY 2022 in Spectrum IEEE
IMAGINE A PORTABLE computer built from a network of 86 billion switches, capable of general intelligence sophisticated enough to build a spacefaring civilization—but weighing just 1.2 to 1.3 kilograms, consuming just 20 watts of power, and jiggling like Jell-O as it moves. There’s one inside your skull right now. It is a breathtaking achievement of biological evolution. But there are no blueprints.
Now imagine trying to figure out how this wonder of bioelectronics works without a way to observe its microcircuitry in action. That’s like asking a microelectronics engineer to reverse engineer the architecture, microcode, and operating system running on a state-of-the-art processor without the use of a digital logic probe, which would be a virtually impossible task.
So it’s easy to understand why many of the operational details of humans’ brains (and even the brains of mice and much simpler organisms) remain so mysterious, even to neuroscientists. People often think of technology as applied science, but the scientific study of brains is essentially applied sensor technology. Each invention of a new way to measure brain activity—including scalp electrodes, MRIs, and microchips pressed into the surface of the cortex—has unlocked major advances in our understanding of the most complex, and most human, of all our organs.
The brain is essentially an electrical organ, and that fact plus its gelatinous consistency pose a hard technological problem. In 2010, I met with leading neuroscientists at the Howard Hughes Medical Institute (HHMI) to explore how we might use advanced microelectronics to invent a new sensor. Our goal: to listen in on the electrical conversations taking place among thousands of neurons at once in any given thimbleful of brain tissue.
Timothy D. Harris, a senior scientist at HHMI, told me that “we need to record every spike from every neuron” in a localized neural circuit within a freely moving animal. That would mean building a digital probe long enough to reach any part of the thinking organ, but slim enough not to destroy fragile tissues on its way in. The probe would need to be durable enough to stay put and record reliably for weeks or even months as the brain guides the body through complex behaviors.
Against a black background, neurons are shown in green and blue. Different metallic shafts come down vertically through the neurons. Different kinds of neural probes pick up activity from firing neurons: three tines of a Utah array with one electrode on each tine [left], a single slender tungsten wire electrode [center], and a Neuropixels shank that has electrodes all along its length .... '
No comments:
Post a Comment