Been surprised by directions Facebook is taking, Giving AI a bad name? In Spectrum IEEE
Why Facebook (Or Meta) Is Making Tactile Sensors for Robots Durable and affordable fingers and skin could help virtual agents understand their world BY EVAN ACKERMAN
Facebook, or Meta as it's now calling itself for some reason that I don't entirely understand, is today announcing some new tactile sensing hardware for robots. Or, new-ish, at least—there's a ruggedized and ultra low-cost GelSight-style fingertip sensor, plus a nifty new kind of tactile sensing skin based on suspended magnetic particles and machine learning. It's cool stuff, but why?
Obviously, Facebook Meta cares about AI, because it uses AI to try and do a whole bunch of the things that it's unwilling or unable to devote the time of actual humans to. And to be fair, there are some things that AI may be better at (or at least more efficient at) than humans. AI is of course much worse than humans at many, many, many things as well, but that debate goes well beyond Facebook Meta and certainly well beyond the scope of this article, which is about tactile sensing for robots. So why does Facebook Meta care even a little bit about making robots better at touching stuff? Yann LeCun, the Chief AI Scientist at Facebook Meta, takes a crack at explaining it:
Before I joined Facebook, I was chatting with Mark Zuckerberg and I asked him, "is there any area related to AI that you think we shouldn't be working on?" And he said, "I can't find any good reason for us to work on robotics." And so, that was kind of the start of Facebook AI Research—we were not going to work on robotics.
After a few years, it became clear that a lot of interesting progress in AI was happening in the context of robotics, because robotics is the nexus of where people in AI research are trying to get the full loop of perception, reasoning, planning, and action, and getting feedback from the environment. Doing it in the real world is where the problems are concentrated, and you can't play games if you want robots to learn quickly.
It was clear that four or five years ago, there was no business reason to work on robotics, but the business reasons have kind of popped up. Robotics could be used for telepresence, for maintaining data centers more automatically, but the more important aspect of it is making progress towards intelligent agents, the kinds of things that could be used in the metaverse, in augmented reality, and in virtual reality. That's really one of the raison d'être of a research lab, to foresee the domains that will be important in the future. So that's the motivation.
Well, okay, but none of that seems like a good justification for research into tactile sensing specifically. But according to LeCun, it's all about putting together the pieces required for some level of fundamental world understanding, a problem that robotic systems are still bad at and that machine learning has so far not been able to solve:
How to get machines to learn that model of the world that allows them to predict in advance and plan what's going to happen as a consequence of their actions is really the crux of the problem here. And this is something you have to confront if you work on robotics. But it's also something you have to confront if you want to have an intelligent agent acting in a virtual environment that can interact with humans in a natural way. And one of the long-term visions of augmented reality, for example, is virtual agents that basically are with you all the time, living in your automatic reality glasses or your smartphone or your laptop or whatever, helping you in your daily life as a human assistant would do, but also can answer any question you have. And that system will have to have some degree of understanding of how the world works—some degree of common sense, and be smart enough to not be frustrating to talk to. And that is where all of this research leads in the long run, whether the environment is real or virtual.
AI systems (robots included) are very very dumb in very specific ways, quite often the ways in which humans are least understanding and forgiving of. This is such a well established thing that there's a name for it: Moravec's paradox. Humans are great at subconscious levels of world understanding that we've built up over years and years of experience being, you know, alive. AI systems have none of this, and there isn't necessarily a clear path to getting them there, but one potential approach is to start with the fundamentals in the same way that a shiny new human does and build from there, a process that must necessarily include touch. .... '
No comments:
Post a Comment