/* ---- Google Analytics Code Below */

Sunday, November 28, 2021

Exotic Material for Superconductors

 New materials for quantum computing  are a big deal. 

Exotic New Material Could Be Two Superconductors in One – With Serious Quantum Computing Applications

TOPICS:Materials ScienceMITQuantum ComputingQuantum MaterialsSuperconductor


Work has potential applications in quantum computing, and introduces new way to plumb the secrets of superconductivity.

MIT physicists and colleagues have demonstrated an exotic form of superconductivity in a new material the team synthesized only about a year ago. Although predicted in the 1960s, until now this type of superconductivity has proven difficult to stabilize. Further, the scientists found that the same material can potentially be manipulated to exhibit yet another, equally exotic form of superconductivity.

The work was reported in the November 3, 2021, issue of the journal Nature.

The demonstration of finite momentum superconductivity in a layered crystal known as a natural superlattice means that the material can be tweaked to create different patterns of superconductivity within the same sample. And that, in turn, could have implications for quantum computing and more.

The material is also expected to become an important tool for plumbing the secrets of unconventional superconductors. This may be useful for new quantum technologies. Designing such technologies is challenging, partly because the materials they are composed of can be difficult to study. The new material could simplify such research because, among other things, it is relatively easy to make.

Three Different Patterns of Superconductivity

Diagram illustrating three different patterns of superconductivity realized in a new material synthesized at MIT. Credit: Image courtesy of the Checkelsky lab

“An important theme of our research is that new physics comes from new materials,” says Joseph Checkelsky, lead principal investigator of the work and the Mitsui Career Development Associate Professor of Physics. “Our initial report last year was of this new material. This new work reports the new physics.”

Checkelsky’s co-authors on the current paper include lead author Aravind Devarakonda PhD ’21, who is now at Columbia University. The work was a central part of Devarakonda’s thesis. Co-authors are Takehito Suzuki, a former research scientist at MIT now at Toho University in Japan; Shiang Fang, a postdoc in the MIT Department of Physics; Junbo Zhu, an MIT graduate student in physics; David Graf of the National High Magnetic Field Laboratory; Markus Kriener of the RIKEN Center for Emergent Matter Science in Japan; Liang Fu, an MIT associate professor of physics; and Efthimios Kaxiras of Harvard University.  ... 

Reference: “Signatures of bosonic Landau levels in a finite-momentum superconductor” by A. Devarakonda, T. Suzuki, S. Fang, J. Zhu, D. Graf, M. Kriener, L. Fu, E. Kaxiras and J. G. Checkelsky, 3 November 2021, Nature.

DOI: 10.1038/s41586-021-03915-3

No comments: