/* ---- Google Analytics Code Below */

Sunday, November 20, 2022

An Interplanetary File System

 Idea is new to me.

Why the Internet Needs the Interplanetary File System

Peer-to-peer file sharing would make the Internet far more efficient

Yiannis Psaris, Jorge Soars, Dav\vd Dia

WHEN THE COVID-19 pandemic erupted in early 2020, the world made an unprecedented shift to remote work. As a precaution, some Internet providers scaled back service levels temporarily, although that probably wasn’t necessary for countries in Asia, Europe, and North America, which were generally able to cope with the surge in demand caused by people teleworking (and binge-watching Netflix). That’s because most of their networks were overprovisioned, with more capacity than they usually need. But in countries without the same level of investment in network infrastructure, the picture was less rosy: Internet service providers (ISPs) in South Africa and Venezuela, for instance, reported significant strain.

But is overprovisioning the only way to ensure resilience? We don’t think so. To understand the alternative approach we’re championing, though, you first need to recall how the Internet works.

The core protocol of the Internet, aptly named the Internet Protocol (IP), defines an addressing scheme that computers use to communicate with one another. This scheme assigns addresses to specific devices—people’s computers as well as servers—and uses those addresses to send data between them as needed.

It’s a model that works well for sending unique information from one point to another, say, your bank statement or a letter from a loved one. This approach made sense when the Internet was used mainly to deliver different content to different people. But this design is not well suited for the mass consumption of static content, such as movies or TV shows.

The reality today is that the Internet is more often used to send exactly the same thing to many people, and it’s doing a huge amount of that now, much of which is in the form of video. The demands grow even higher as our screens obtain ever-increasing resolutions, with 4K video already in widespread use and 8K on the horizon.

The content delivery networks (CDNs) used by streaming services such as Netflix help address the problem by temporarily storing content close to, or even inside, many ISPs. But this strategy relies on ISPs and CDNs being able to make deals and deploy the required infrastructure. And it can still leave the edges of the network having to handle more traffic than actually needs to flow.

The real problem is not so much the volume of content being passed around—it’s how it is being delivered, from a central source to many different far-away users, even when those users are located right next to one another.

This diagram depicts the information in a database table with two columns: Node and Content. The diagram also shows nodes in the network that query the database to find the location of files they are seeking.One scheme used by peer-to-peer systems to determine the location of a file is to keep that information in a centralized database. Napster, the first large-scale peer-to-peer content-delivery system, used this approach.CARL DE TORRES

A more efficient distribution scheme in that case would be for the data to be served to your device from your neighbor’s device in a direct peer-to-peer manner. But how would your device even know whom to ask? Welcome to the InterPlanetary File System (IPFS).

The InterPlanetary File System gets its name because, in theory, it could be extended to share data even between computers on different planets of the solar system. For now, though, we’re focused on rolling it out for just Earth!

The key to IPFS is what’s called content addressing. Instead of asking a particular provider, “Please send me this file,” your machine asks the network, “Who can send me this file?” It starts by querying peers: other computers in the user’s vicinity, others in the same house or office, others in the same neighborhood, others in the same city—expanding progressively outward to globally distant locations, if need be, until the system finds a copy of what you’re looking for.

These queries are made using IPFS, an alternative to the Hypertext Transfer Protocol (HTTP), which powers the World Wide Web. Building on the principles of peer-to-peer networking and content-based addressing, IPFS allows for a decentralized and distributed network for data storage and delivery.

The benefits of IPFS include faster and more-efficient distribution of content. But they don’t stop there. IPFS can also improve security with content-integrity checking so that data cannot be tampered with by intermediary actors. And with IPFS, the network can continue operating even if the connection to the originating server is cut or if the service that initially provided the content is experiencing an outage—particularly important in places with networks that work only intermittently. IPFS also offers resistance to censorship. ... '

No comments: