Quantum Advantage
Disentangling Hype from Practicality: On Realistically Achieving Quantum Advantage
By Torsten Hoefler, Thomas Häner, Matthias Troyer
Communications of the ACM, May 2023, Vol. 66 No. 5, Pages 82-87 10.1145/3571725
Operating on fundamentally different principles than conventional computers, quantum computers promise to solve a variety of important problems that seemed forever intractable on classical computers. Leveraging the quantum foundations of nature, the time to solve certain problems on quantum computers grows more slowly with the size of the problem than on classical computers—this is called quantum speedup. Going beyond quantum supremacy,2 which was the demonstration of a quantum computer outperforming a classical one for an artificial problem, an important question is finding meaningful applications (of academic or commercial interest) that can realistically be solved faster on a quantum computer than on a classical one. We call this a practical quantum advantage, or quantum practicality for short.
There is a maze of hard problems that have been suggested to profit from quantum acceleration: from cryptanalysis, chemistry and materials science, to optimization, big data, machine learning, database search, drug design and protein folding, fluid dynamics and weather prediction. But which of these applications realistically offer a potential quantum advantage in practice? For this, we cannot only rely on asymptotic speedups but must consider the constants involved. Being optimistic in our outlook for quantum computers, we identify clear guidelines for quantum practicality and use them to classify which of the many proposed applications for quantum computing show promise and which ones would require significant algorithmic improvements to become practical and relevant.
To establish reliable guidelines, or lower bounds for the required speedup of a quantum computer, we err on the side of being optimistic for quantum and overly pessimistic for classical computing. Despite our overly optimistic assumptions, our analysis shows a wide range of often-cited applications is unlikely to result in a practical quantum advantage without significant algorithmic improvements. We compare the performance of only a single classical chip fabricated like the one used in the NVIDIA A100 GPU that fits around 54 billion transistors15 with an optimistic assumption for a hypothetical quantum computer that may be available in the next decades with 10,000 error-corrected logical qubits, 10μs gate time for logical operations, the ability to simultaneously perform gate operations on all qubits and all-to-all connectivity for fault tolerant two-qubit gates ....
No comments:
Post a Comment