/* ---- Google Analytics Code Below */

Sunday, October 24, 2021

Is AI Re-Inventing Computers?

Very interesting piece.  Anything can become a computer?

Three key ways artificial intelligence is changing what it means to compute.

By Will Douglas Heaven,  October 22, 2021  in TechnologyReview

Fall 2021: the season of pumpkins, pecan pies, and peachy new phones. Every year, right on cue, Apple, Samsung, Google, and others drop their latest releases. These fixtures in the consumer tech calendar no longer inspire the surprise and wonder of those heady early days. But behind all the marketing glitz, there’s something remarkable going on. 

Google’s latest offering, the Pixel 6, is the first phone to have a separate chip dedicated to AI that sits alongside its standard processor. And the chip that runs the iPhone has for the last couple of years contained what Apple calls a “neural engine,” also dedicated to AI. Both chips are better suited to the types of computations involved in training and running machine-learning models on our devices, such as the AI that powers your camera. Almost without our noticing, AI has become part of our day-to-day lives. And it’s changing how we think about computing.

What does that mean? Well, computers haven’t changed much in 40 or 50 years. They’re smaller and faster, but they’re still boxes with processors that run instructions from humans. AI changes that on at least three fronts: how computers are made, how they’re programmed, and how they’re used. Ultimately, it will change what they are for. 

“The core of computing is changing from number-crunching to decision-­making,” says Pradeep Dubey, director of the parallel computing lab at Intel. Or, as MIT CSAIL director Daniela Rus puts it, AI is freeing computers from their boxes. 

More haste, less speed

The first change concerns how computers—and the chips that control them—are made. Traditional computing gains came as machines got faster at carrying out one calculation after another. For decades the world benefited from chip speed-ups that came with metronomic regularity as chipmakers kept up with Moore’s Law. 

But the deep-learning models that make current AI applications work require a different approach: they need vast numbers of less precise calculations to be carried out all at the same time. That means a new type of chip is required: one that can move data around as quickly as possible, making sure it’s available when and where it’s needed. When deep learning exploded onto the scene a decade or so ago, there were already specialty computer chips available that were pretty good at this: graphics processing units, or GPUs, which were designed to display an entire screenful of pixels dozens of times a second. 

Anything can become a computer. Indeed, most household objects, from toothbrushes to light switches to doorbells, already come in a smart version.   ... ' 

No comments: