Overview of interest: Opinion
Disentangling the Facts From the Hype of Quantum Computing IEEE Quantum Week is a chance to celebrate progress and acknowledge the challenges JAMES S. CLARKE 19 SEP 2022
This is a guest post in recognition of IEEE Quantum Week 2022. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.
Few fields invite as much unbridled hype as quantum computing. Most people’s understanding of quantum physics extends to the fact that it is unpredictable, powerful, and almost existentially strange. A few years ago, I provided IEEE Spectrum an update on the state of quantum computing and looked at both the positive and negative claims across the industry. And just as back in 2019, I remain enthusiastically optimistic today. Even though the hype is real and has outpaced the actual results, much has been accomplished over the past few years.
First, let’s address the hype.
Over the past five years, there has been undeniable hype around quantum computing—hype around approaches, timelines, applications, and more. As far back as 2017, vendors were claiming the commercialization of the technology was just a couple of years away—like the announcement of a 5,000-qubit system by 2020 (which didn’t happen). There was even what I’d call antihype, with some questioning if quantum computers would materialize at all (I hope they end up being wrong).
More recently, companies have shifted their timelines from a few years to a decade, but they continue to release road maps showing commercially viable systems as early as 2029. And these hype-fueled expectations are becoming institutionalized: The Department of Homeland Security even released a road map to protect against the threats of quantum computing, in an effort to help institutions transition to new security systems. This creates an “adopt or you’ll fall behind” mentality for both quantum-computing applications and postquantum cryptography security.
Market research firm Gartner (of the “Hype Cycle” fame) believes quantum computing may have already reached peak hype, or phase two of its five-phase growth model. This means the industry is about to enter a phase called “the trough of disillusionment." According to McKinsey & Company, “fault tolerant quantum computing is expected between 2025 and 2030 based on announced hardware roadmaps for gate-based quantum computing players.” I believe this is not entirely realistic, as we still have a long journey to achieve quantum practicality—the point at which quantum computers can do something unique to change our lives.
In my opinion, quantum practicality is likely still 10 to 15 years away. However, progress toward that goal is not just steady; it’s accelerating. That’s the same thing we saw with Moore’s Law and semiconductor evolution: The more we discover, the faster we go. Semiconductor technology has taken decades to progress to its current state, accelerating at each turn. We expect similar advancement with quantum computing.
In fact, we are discovering that what we have learned while engineering transistors at Intel is also helping to speed our quantum-computing development work today. For example, when developing silicon spin qubits, we’re able to leverage existing transistor-manufacturing infrastructure to ensure quality and to speed up fabrication. We’ve started the mass production of qubits on a 300-millimeter silicon wafer in a high-volume fab facility, which allows us to fit an array of more than 10,000 quantum dots on a single wafer. We’re also leveraging our experience with semiconductors to create a cryogenic quantum control chip, called Horse Ridge, which is helping to solve the interconnect challenges associated with quantum computing by eliminating much of the cabling that today crowds the dilution refrigerator. And our experience with testing semiconductors has led to the development of the cryoprober, which enables our team to get testing results from quantum devices in hours instead of the days or weeks it used to take.
Others are likely benefiting from their own prior research and experience, as well. For example, Quantinuum’s recent research showed the entanglement of logical qubits in a fault-tolerant circuit using real-time quantum error correction. While still primitive, it’s an example of the type of progress needed in this critical field. For its part, Google has a new open-source library called Cirq for programming quantum computers. Along with similar libraries from IBM, Intel, and others, Cirq is helping drive development of improved quantum algorithms. And, as a final example, IBM’s 127-qubit processor, called Quantum Eagle, shows steady progress toward upping the qubit count. .... ' (moreat link)
No comments:
Post a Comment