And more elements of AI automation. Here from MIT. The details of the data construction for this is also described, which is always enlightening.
Machine-learning system tackles speech and object recognition, all at once
Model learns to pick out objects within an image, using spoken descriptions. By Rob Matheson | MIT News Office
MIT computer scientists have developed a system that learns to identify objects within an image, based on a spoken description of the image. Given an image and an audio caption, the model will highlight in real-time the relevant regions of the image being described.
Unlike current speech-recognition technologies, the model doesn’t require manual transcriptions and annotations of the examples it’s trained on. Instead, it learns words directly from recorded speech clips and objects in raw images, and associates them with one another.
The model can currently recognize only several hundred different words and object types. But the researchers hope that one day their combined speech-object recognition technique could save countless hours of manual labor and open new doors in speech and image recognition.
Speech-recognition systems such as Siri and Google Voice, for instance, require transcriptions of many thousands of hours of speech recordings. Using these data, the systems learn to map speech signals with specific words. Such an approach becomes especially problematic when, say, new terms enter our lexicon, and the systems must be retrained.
“We wanted to do speech recognition in a way that’s more natural, leveraging additional signals and information that humans have the benefit of using, but that machine learning algorithms don’t typically have access to. We got the idea of training a model in a manner similar to walking a child through the world and narrating what you’re seeing,” says David Harwath, a researcher in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Spoken Language Systems Group. Harwath co-authored a paper describing the model that was presented at the recent European Conference on Computer Vision.
In the paper, the researchers demonstrate their model on an image of a young girl with blonde hair and blue eyes, wearing a blue dress, with a white lighthouse with a red roof in the background. The model learned to associate which pixels in the image corresponded with the words “girl,” “blonde hair,” “blue eyes,” “blue dress,” “white light house,” and “red roof.” When an audio caption was narrated, the model then highlighted each of those objects in the image as they were described. .... "
Related article.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment