/* ---- Google Analytics Code Below */

Monday, July 15, 2019

Data Independence

A look at the value of the data that depends on how it can be used.   Came up in a conversation about data valuation versus risk just the other day.   Sometimes we are forced to make a choice based on connected industries that we work with.

Celebrating Data Independence
By Alex Woodie in Datanami

Every company wants the independence to do what they wish with their data. That’s one of the first assumptions underlying this whole big data movement. But depending on where and how a business stores its data — such as in proprietary formats, whether on-prem or the cloud – users may inadvertently limit their data freedom going forward.

Enticed by cheap and abundant storage and the flexibility to scale compute resources as needed, customers are moving exabytes of data from on-prem systems to object storage systems in the cloud. Hadoop, as the preeminent on-premise big data storage system, stands to lose a good chunk of mindshare and marketshare in the process, while the three major cloud platforms — AWS, Microsoft Azure, and Google Cloud – are capitalizing on the trend and growing very fast.

In addition to minimizing Hadoop’s influence, this great migration of data to the cloud is helping to shake up the analytics market too. Instead of writing their software to run on Hadoop, vendors are now forced to be much more agnostic about where the data lives. That means supporting not just Hadoop, but multiple cloud and hybrid deployments that include cloud and on-premise systems.

“Every Fortune 2000 company has 10 different vendors that have data that they want to access holistically, but they can’t because of the vendors,” says Chris Lynch, the CEO of analytics software vendor AtScale. “You can’t have big data unless you have all the data. That’s the most important asset that any company has.”

A typical bank might house retail data on one vendor’s system and loan origination data on another system, Lynch says. “And that data isn’t easily aggregated to analyze. How archaic is that? And only because it runs on two different vendors’ systems,” he says. .... "

No comments: